

Rajiv Gandhi University of Knowledge Technologies

(Telangana Government Act 8 of 2016) Basar, Nirmal, Telangana State – 504107, India.

2 +91 - 94923 02117 | academics@rgukt.ac.in | www.rgukt.ac.in

Department of Computer Science and Engineering

Machine Learning – DataMining Research Club

Club Objectives:

- Educate members on what exactly is ML-DM and its possibilities. (primary)
- ➤ Developing the interests of members in ML-DM. (primary)
- Making members familiar with frameworks, best practices. (primary)
- The members should understand the algorithms, its maths and Real World uses. (primary)
- Practical and hands-on experience. (primary)
- ➤ Inter-college participation if any [Workshops/Conferences]. (secondary)
- Making students industry ready and try to provide internships. (secondary)
- > To develop better coding culture.
- > Promoting various domains of programming and design

Background Work:

- ML-DM is an extremely hot topic in the industry, with all companies hiring in this field.
- > Practical experience and good knowledge is a must to succeed in Industry.
- Data, algorithms, and computation are advancing. We need skills to leverage that.
 - ➤ Machine Learning & Data Mining has applications in all domains (Healthcare, finance, entertainment, surveillance, etc).

Club Outcomes:

Upon successful completion of this task, students will be able to:

- State the various applications available in the tool being used
- Describe the data sets and plan for transforming it into task relevant data
- Employ appropriate pre-processing techniques, based on the data sets
- Infer the mining algorithms as a component to the existing tools
- > Apply mining techniques for realistic data

System Configuration Required:

Hardware:

Processor : Intel i5 Core

RAM : 4 GB

Hard Disk : 160 GB

Mouse : Optical Mouse

Software:

Operation System : Windows or Linux

Programming Language : Python with Required Modules Installed

iDE : Anaconda3 or Jupyter NoteBook [Latest Version]

Prerequisites:

- Make sure that students must and should have basic idea above Python Programming
- ➤ Idea over Python Libraries such as Numpy, Scipy, Pandas, Seaborn, SciKit-Learn, MatplotLib, Plotly & PySpark and many more
- Good at Analytical and Logical Skills

Evaluation Process:

- Students have to maintain separate record and submit week-wise reports when ever necessary
- ➤ Online Attendance will be taken through LMS & Continuous Evaluation will be done by conducting Quiz & Assignments to calculate the performance of students

Text Books:

- 1. Stephen Marsland, "Machine Learning –An Algorithmic Perspective", Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.
- 2. Tom M Mitchell, "Machine Learning", First Edition, McGraw Hill Education, 2013.
- 3. Data Mining Concepts and Techniques- Jiawei Han & Micheline Kamber, Elsevier.
- 4. Data Mining: Practical Machine Learning Tools and Techniques-I. H. Witten and E. Frank, Morgan Kaufmann. 2000
- 5. Python Programming using Problem solving Approach Reema Thareja, Oxford University Press
- 6. Budd, Exploring Python. McGraw Hill, 2008
- 7. Zelle, Python Programming: An Introduction to Computer Science. Franklin, Beedle & Assoc., 2010
- 8. Pearson Education Publishing Starting Out with Python 3rd (2015)

Reference Books:

- 1. Peter Flach, "Machine Learning: The Art and Science of Algorithms that Make Sense of Data", First Edition, Cambridge University Press, 2012.
- 2. Jason Bell, "Machine learning –Hands on for Developers and Technical Professionals", First Edition, Wiley, 2014
- 3. Ethem Alpaydin, "Introduction to Machine Learning 3e (Adaptive Computation and Machine Learning Series)", Third Edition, MIT Press, 2014
- 4. Building the DataWarehouse- W. H. Inmon, Wiley Dreamtech India Pvt. Ltd..
- 5. Data Mining Introductory and Advanced topics Margaret H Dunham, Pea.

Online Learning Sources:

- https://onlinecourses.nptel.ac.in/
- https://www.coursera.org/learn/machine-learning?
- https://www.javatpoint.com/python-tutorial
- https://www.javatpoint.com/machine-learning
- https://www.javatpoint.com/data-mining
- https://www.udacity.com/course/intro-to-machine-learning--ud120
- https://github.com/JannesKlaas/MLiFC

Download and Install Python 3.5: https://www.python.org/downloads/

Week-Wise Task

Week-1:

Introduction to DataMining Concepts

- Data Mining Functionalities

Introduction to Machine Learning Concepts

- Learning –Types of Machine Learning

Introduction to Python Programming Language – Level-1

Introduction to Tools/ IDE:

- > IDE-Tools [Jupiter NoteBook], Anaconda, Sublime
- ➤ Online [Google Colab, Kaggle Kernel] –GPU support

Programming using Python:

- > Python Basics
- > Python Operators and Expressions
- Decision Control Statements
- Basic Loop Structures/Iterative Statements
- Data Structures
- Introduction to Functions

Week-2:

Introduction to Python Programming Language – Level-2

- > File Handling
- > Error and Exceptional Handling
- Multi-Threading

Python Frameworks:

- ➤ Plotting Graphs in Python :Matplotlib , Plotting, Subplots, Images
- > Simple Graphics using Turtle in Python: Turtle module, Turtle Methods
- ➤ **GUI Programming with tkinter Package**: tkinter module, Widgets and their functions
- Numpy: Arrays, Array indexing, Datatypes, Array math, Broadcasting
- SciPy: Image operations, MATLAB files, Distance between points
- ➤ **Panda** dataframe, indexing and selection, descriptive statistics, handling missing data, reading and writing files.

Week-3:

Data Mining-Data Preprocessing Techniques

Case Study-1Task: DataPre-processing and Visualization

Start working on Sample Dataset

Week-4:

Classification and Regression

Classification:

- ➤ Linear Classification
- ➤ Multi-class Classification

Regression:

- ➤ Logistic Regression
- > Multiple Linear Regression

Association Rule Mining

Week-5:

Different Classifier Techniques

- Decision Tree Algorithm
- ➤ K Nearest Neighbor KNN Algorithm

Week -6:

Different Classifier Techniques

- ➤ NaiveBayes Classifier Algorithm
- > Support Vector Machine Algorithm

Week-7:

Clustering

- K-means Clustering Algorithm
- ➤ Hierarchical Clustering Algorithm
- Clustering Techniques

Week-8:

Artificial Neural Network

- ➤ Single-layer Perceptron (SLP)
- ➤ Multi-layer Perceptron (MLP)

Week-9:

Gradient Descent Algorithm

- Gradient Descent Algorithm Work in Machine Learning
- Forward Propagation
- Backward Propagation

Week-10:

Case Study-2 Application Oriented Based Implementation

*** WE WISH ALL THE GOOD LUCK ***

Mr.K.RAVIKANTH

Assistant Professor

ML-DM RESEARCH CLUB INCHARGE

Dept. of CSE, RGUKT-Basar.